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Abstract 

Dungeness crabs support Oregon’s largest fishery, which inputs millions of pounds of 

bait, including squid, razor clams, and sardines into the coastal ocean every year. This paper 

assesses evidence for seasonal consumption of commercial Dungeness crab (Cancer magister) 

fishery bait off the Oregon coast by that target species using δ13C and δ15N stable isotope and gut 

content analysis. Fishing effort and associated bait inputs are typically concentrated in the winter 

between December and February. Using Dungeness crab samples collected on Oregon’s inner to 

mid-continental shelf, variation in δ13C and δ15N values are assessed according to sex, size class, 

region, and season using nested analysis of variance (ANOVA), Euclidean vector statistics, and 

Bayesian standard ellipse areas (SEAc) in R (Version 4.0.4). Trophic ecologists commonly use 

δ13C and δ15N isotope ratios in consumer tissues to assess prey provenance and trophic level. The 

isotopic signatures of sampled crabs show statistically significant variation by sex, region, and 

season; the differences in the isotopic niches of large male versus female crabs (carapace width ≥ 

159mm) are especially pronounced. δ15N in female crabs peak in spring and decline to fall with 

similar mean δ13C, which could be indicative of higher trophic level bait consumption in the 

winter, while δ13C vary seasonally in males with similar mean δ15N. The approximated trophic 

niches (using SEAc) of both male and female crabs were greatest in fall, suggesting broader 

foraging in the absence of bait inputs. This work provides a step towards understanding the 

ecological role of fishery activities on one of the most economically valuable species on the west 

coast of the United States. 
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1. Introduction 

Oregon’s commercial Dungeness crab fishery inputs millions of pounds of bait into the 

coastal ocean each year (Davis et al. 2017, Harbison 2021), especially during the wintertime 

when fishing effort peaks (Dewees et al. 2004). In this paper, we seek to discern if δ13C and δ15N 

stable isotope signatures and gut contents within Dungeness crabs provide evidence for 

spatiotemporally variable consumption of fishery bait by that target species. Exploring 

relationships between bait subsidies and commercially targeted crustaceans is not without 

precedent. Several authors have hypothesized that fisheries discards increase the abundance of 

benthic scavengers (Furness et al. 1988, Berghahn 1990, Wassenberg & Hill 1990, Kaiser & 

Spencer 1996, Ramsay et al. 1997). Research on trap-based commercial lobster fisheries in 

Maine and Western Australia found that bait subsidies have altered the trophodynamics of 

lobsters in those regions (Saila et al. 2002, Grabowski et al. 2009, Waddington & Meeuwig 

2009). Grabowski et al. (2009) asserted that herring bait “augmented lobster populations” at a 

heavily fished site in the Gulf of Maine. On a global scale, fisheries discards increase the 

availability of organic material to benthic communities (Britton & Morton 1994). These food 

subsidies impact ecosystem functioning in numerous ways, including increasing secondary 

productivity (Ramsay et al 1997, Groenewold & Fonds 2000), reducing consumption of natural 

prey species (Waddington & Meeuwig 2009), and transporting biomass from pelagic to coastal 

systems (Grabowski et al. 2009). 

Understanding Dungeness crab trophodynamics has tremendous economic implications. 

Oregon’s commercial Dungeness crab (Cancer magister) ocean fishery is typically the largest 

and most profitable fishery in the state. During the 2019-2020 season, 320 active crabbing permit 

holders landed 19.9 million pounds of crab, generating $72.7 million in ex-vessel value (Oregon 
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4 FISHERY BAIT IMPACTS ON DUNGENESS CRAB ECOLOGY             

Department of Fish and Wildlife (ODFW) 2020). Oregon manages the fishery under the “3S” 

system: sex, size, and season, with limited vessel entry and pot limits of 200, 300, or 500 per 

commercial permit. Male crabs over 159 mm carapace width (CW) can be commercially 

harvested during the season, which generally runs between December 1st and August 14th for the 

ocean fishery. Oregon also supports a smaller scale bay fishery that is open through fall, but that 

fishery represents just 0.2% of the total Dungeness crab harvest (ODFW 2021a). Current 

exploitation rates indicate that 80-90% of the legal sized males are harvested each year, and yet 

the population maintains high reproductive success (Hankin et al. 1997, Dunn & Shanks 2012). 

While numerous species around the world have been overfished and depleted, evidence suggests 

that the Cancer magister fishery off the Oregon coast has not caused an overall reduction in the 

resource. 

The Dungeness crab population is not subject to formal stock assessments; rather, 

commercial catch is considered a sufficient proxy for legal sized male abundance (Richerson et 

al. 2020). Historically, catch has fluctuated in roughly decadal cycles, although this cyclical 

trend has broken down over the last several decades (Botsford et al. 1982; Botsford and 

Lawrence 2002), when average landings have increased (Richerson et al. 2020). Crabbers landed 

the largest recorded annual catch during the 2004-2005 season, at 33.7 million pounds (ODFW 

2021b). Researchers have presented various hypotheses to explain population fluctuations 

(Johnson et al. 1986, Shanks and Roegner 2007, Armstrong et al. 2010, Shanks et al. 2010, 

Rasmuson 2013, Shanks 2013), generally citing environmental and oceanographic rather than 

fishery related drivers. One pertinent theory is that density-dependent prevalence of cannibalism 

may also contribute to population fluctuations (Higgins et al. 1997, Fernandez 1999, Shanks 

2013).  
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Crabbers use a wide variety of baits, including squid, clams, sardines, mackerel, mink, 

tuna, rockfishes, chicken, herring, anchovy, black cod, hake, halibut, and salmon (Bostrom et al. 

2018, ODFW 2020, Harbison 2021), although specific species of the above listed baits are 

generally not reported. Fishermen use a variety of baiting equipment inside their pots, including 

bait jars, chew bags, and bait pins. Bait jars have holes that allow the scent to escape but are not 

large enough for captured crabs to access the bait. Chew bags made of large mesh and bait pins, 

on the other hand, allow the crabs consume bait while in the pots. After pulling the pots, crabbers 

toss used bait overboard. Each crabber uses approximately 35,000 ± 12,432 pounds of bait per 

season (Harbison 2021) resulting in an estimated 11.2 million pounds of bait input to the coastal 

ocean during the 2019-2020 season by Oregon’s 320 permit holders. The most intense fishing 

effort and associated bait inputs occur within the first six weeks of the open season (Dewees 

2004); fishermen caught 86% of total harvest within the first two months of the 2019-2020 

season (ODFW 2020). 

Stable isotope analysis (SIA) and gut content analysis complement each other, and 

combined, constitute a powerful tool for inferring diet composition. δ15N and δ13C SIA provides 

information regarding dietary preferences over weeks to months. Studies show that isotopic 

ratios of consumers reflect those of their prey. Traditionally, δ15N values have been used to 

evaluate trophic position, while δ13C help determine the ecological provenance of food sources, 

such as terrestrial, estuarine, benthic, or pelagic. Ecologists frequently use trophic discrimination 

factors (TDFs) to estimate the trophic position of consumers as well as the degree to which they 

assimilate their food into their tissues. Although TDFs vary widely across organisms, δ13C in 

animals usually remains within around 0-1‰ of their diet and δ15N generally increases by around 

3-3.5‰ per trophic level (Deniro & Epstein 1978, Michener & Schell 1994, Post 2002, Viozzi et 
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al. 2021). One key factor to consider when reading SIA results is that tissue turnover rates 

determine the amount of time it takes for the isotopic composition of consumer tissues to reflect 

changes in that consumer’s diet. These tissue turnover rates differ across and within species, 

depending on several factors including the type of tissue analyzed (Tieszen et al. 1983). 

Although tissue turnover rates have not been assessed for Dungeness crab, this study used 

Dungeness crab leg muscle tissue to assess seasonal change in the species’ diet composition 

based on tissue turnover rates approximated in other decapod species. A study on two decapod 

species, Episesarma singaporense and E. versicolor, showed that δ15N of muscle tissue shifted 

significantly after a change in diet after between 50 and 70 days (Herbon & Nordhaus 2013). 

Additionally, Bui & Lee (2014) suggested that tissue turnover results in isotopic equilibrium 

within the muscle tissues of the crab Parasesarma erythodactyla within 56 days. Møller et al. 

(2008) used a tissue turnover rate of ≥ 63 days in an experimental study on δ15N and δ13C 

isotope ratios in the blue swimmer crab Portunus pelagicus but cautioned that tissues may not 

have reached complete isotopic equilibrium during that period. 

While SIA can be used to estimate prey provenance and trophic level, it cannot identify 

specific prey species, thus, differentiating relative consumption of food items with similar 

isotopic compositions can be challenging. This limitation of SIA is particularly relevant to this 

study because some Dungeness crab prey species, such as small bivalves and decapods, are 

isotopically similar to commercial bait species, like razor clams. Gut content analysis partially 

offsets this limitation. Prey items can theoretically be identified within guts down to the species 

level, although crustaceans heavily masticate their prey, making identification a difficult task 

(Waterman 1960, Stevens et al. 1982). Gut contents provide information about an organism’s 

feeding preferences hours to days prior to capture. Several authors hypothesize that gut content 
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analysis tends to underestimate the importance of food items that lack hard structures, because 

they are digested more quickly (Stevens et al. 1982). However, a consumer’s isotopic 

composition reflects soft food sources even if they leave few remnants in their guts. 

We conducted SIA on crabs as well as natural prey and bait species to compare the 

isotopic ratios of the consumers to the potential sources. In accordance with approximated tissue 

turnover rates of between 50-70 days in other crab species (Møller et al. 2008, Herbon & 

Nordhaus 2013, Bui & Lee 2014), we assumed that stable isotope ratios in the tissues of crabs 

collected in each season would reflect food consumption from the previous season. Gut contents, 

on the other hand, were assumed to reflect consumption days to hours before sample collection. 

Given that fishing effort generally peaks between December and February (Dewees 2004) in the 

ocean fishery, SIA values and gut contents were hypothesized to reflect peak bait consumption 

during that period, characterized by comparatively higher δ15N and δ13C from the consumption 

of some higher trophic level and/or pelagic bait species, including rockfish and mackerel, that are 

unlikely to be prevalent in wild Dungeness crab diets. In the spring, juvenile Dungeness crab 

settle in estuaries and the nearshore (Gunderson et al. 1990), and authors report cannibalism 

between (MacKay 1942, Butler 1954, Gotshall 1977) and within age class (Jacoby 1983, Karpov 

1983, Fernandez et al. 1993a, b, 1994). Accordingly, guts collected in the spring and summer 

were hypothesized to contain Cancer magister fragments. Both juvenile settlement and 

commercial Dungeness crab harvest in the ocean fishery cease almost entirely by early fall, 

therefore, we hypothesized that crabs collected in October and December would reflect peak 

consumption of benthic invertebrate food sources such as bivalves, gastropods, polychaetes, and 

small teleost flatfish (Bernard 1979, Feder & Paul 1980, Stevens et al. 1982) characterized by the 

lowest relative δ15N ratios. Additionally, we hypothesized that female and sub-legal male (<159 
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mm carapace width (CW)) crabs would show stronger bait signatures than legal-sized males 

(≥159 mm CW) because they have the opportunity to feed on bait in multiple pots and be 

returned to the ocean, while legal males are harvested upon capture.  

2. Methods 

2.1 Study Area 

Dungeness crabs were collected across three geographic regions of the Oregon coast 

(North, Central, and South) during four seasons (December 2019, March/April 2020, June/July 

2020, and October 2020) at 20-50 m depth on the shelf outside bays and estuaries. Regions were 

determined by splitting the Oregon coastline into three latitudinal sections; the Oregon/California 

border (41.99°N) to Reedsport, OR (43.72°N) was considered “South,” north of Reedsport to 

Lincoln City, OR (44.96°N) was considered “Central,” and north of Lincoln City to the 

Oregon/Washington (46.26°N) border was considered “North” (Figure 1). All three regions lie 

within the California Current system on a relatively narrow continental shelf and are subject to 

variably timed summer upwelling and winter downwelling regimes accompanied by strong storm 

surge (Kaiser et al. 2001). The “South” region (Cape Arago, Langlois, and Port Orford study 

sites) encompasses a major north-south shift in oceanographic conditions and invertebrate 

recruitment patterns that occurs in the Cape Arago and Cape Blanco region (Broitman et al. 

2008). The collection areas lay within commercial fishing grounds, which are generally 

characterized by low relief and structural complexity (Marine Stewardship Council 2010) and 

predominantly silt and/or sand covered bottoms (Pacific Fisheries Management Council 1978). 
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2.2 Sample Collection 

Whenever possible, 10 legal-sized males (CW ≥ 159mm), 10 sub-legal males (CW < 

159mm), and 10 female crabs were collected during each sampling session, except in December 

2019 when only males were obtained through ODFW’s meat fullness sampling. Samples were 

collected by commercial fishermen at the Garibaldi (North) and Pacific City (North) sites in 

Spring 2020 and Port Orford (South) in Spring 2021 using varying baiting methods. COVID-19 

travel restrictions prevented sampling of crabs in the South region in Spring 2020. Crabbers 

recorded the geographic location and depth of each collection site. Collected crabs were stored 

on deck after capture, rather than in holding tanks. All other samples were collected by the 

authors using closed bait pitchers to prevent crabs from consuming bait inside the pot and 

contaminating their stomach contents. Pots were baited with chicken, salmon, halibut, and/or 

rockfish. A total of 358 individual Dungeness crabs were collected; their CWs ranged from 108-

198mm (Table 1). None of the adult Dungeness crab samples were collected in the vicinity of 

fish processing plant dumping grounds.  

Fishery bait species were selected based on ODFW fishery logbook data from 2013-

2017. Squid, mackerel, razor clams, and sardines were acquired from Pacific Seafood, Inc., in 

Newport, OR, during December 2020. Rockfish carcasses were sourced from a recreational 

charter vessel in Garibaldi, OR, in July 2020. Dungeness crab food sources identified from 

literature, including macroalgae, bivalves, and eelgrass were collected from the Yaquina Bay 

mudflats near Newport, OR, in April 2021 along with cockle clams, which are used as bait in the 

commercial fishery. All other putative prey based on literature, including Callianax sp., Crangon 

sp., juvenile Cancer magister, cumaceans, Citharichthys sordidus, and small bivalves were 

sorted from beam trawl samples collected off Newport, OR, by Henkel between 2011 and 2016.  
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2.3 Gut Content Analysis 

Complete digestive tracts were removed from collected crabs after they were euthanized 

according to Institutional Animal Care and Use Committee regulations (except in December 

2019 when samples had been frozen by ODFW prior to acquisition) and stored in 70% ethanol. 

Stomachs were dissected using a straightedge blade and tweezers and inspected under a 

dissecting microscope. Similar items were sorted into piles and photographed with a Leica 

camera connected to the scope for later identification. Gut contents were identified to the lowest 

taxa possible but then grouped at coarser taxonomic levels for analysis as contents could not be 

identified from all crabs with equal resolution. The presence or absence of each prey category, 

soft tissue, and sand were recorded for each stomach. The frequency of occurrence (FO) of each 

category was calculated as the percentage of stomachs that contained a given item or were empty 

within each sample site, region, and season. FO across sex and size classes and within and across 

sites and seasons were compared. 

2.4 Stable Isotope Analysis 

All the legs from each sampled crab were frozen at 20°C at the time of collection. After 

the samples were partially thawed, the muscle tissue was extracted from the shells and dried at 

60°C for ≥ 48 hours. Leg tissue was the only type of tissue extracted from the adult Dungeness 

crab samples to avoid the possible confounding factor of varying tissue turnover rates across 

multiple tissue types. All inorganic carbon structures were excluded from the samples. Studies 

indicate that lipid extraction from crustacean tissues does not have a significant effect on δ13C 
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nor δ15N (Bodin et al. 2007). Therefore, lipids were not removed during processing and no 

mathematical lipid corrections were applied. 

The bait and prey collected in April 2020 from the Yaquina Bay mudflats were dried 

fresh at 60°C for ≥ 48 hours without being frozen because we were able to process them quickly 

immediately after collection. All other bait and prey samples were frozen upon collection and 

partially thawed prior to drying at 60°C for ≥ 48 hours. In processing the bait and prey, inorganic 

carbon structures were excluded in all species except crustacean prey, which were processed 

whole without acid washing. All dried samples were ground manually to a fine powder using a 

mortar and pestle. The mortar and pestle were cleaned with water and acetone between each 

sample. The powdered samples were stored in airtight 1.5-2mL glass vials. 1 mg (±0.1 mg) of 

each powdered sample was weighed, transferred into tin capsules (EA Consumables–Part 

#D1002), and placed in 96 well plates (VWR–Part #10062-902).   

Samples were analyzed at the NOAA Alaska Fisheries Science Center in Auke Bay, AK, 

or at the College of Earth, Ocean, and Atmospheric Science (CEOAS) Stable Isotope Lab at 

Oregon State University (OSU) in Corvallis, OR. Samples of adult Dungeness crab collected 

from Langlois, Port Orford, and Cape Arago on 12/16/2019 and Port Orford on 5/18/2021 as 

well as small bivalve prey (<20mm), eelgrass (Zostera marina), and cockle clams (Clinocardium 

nuttallii) were processed at the OSU lab (total n = 144). All other adult Dungeness crab, bait, and 

prey samples were processed at the NOAA lab (total n = 514) (See Tables 3 & 4). In the OSU 

lab, the carbon and nitrogen isotopic composition were analyzed by continuous-flow isotope 

ratio mass spectrometry using a Carlo Erba elemental analyzer (EA) connected to a Thermo 

DeltaPlus isotope ratio mass spectrometer (IRMS). The international standard glutamic acid 

(United States Geological Survey (USGS)-40) and Stable Isotope Laboratory (SIL) sucrose were 
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used as standards for δ13C, measured relative to Vienna Pee Dee Belemnite (V-PDB) while 

glutamic acid (USGS-40) and International Atomic Energy Agency (IAEA) N-2 ammonium 

sulfate were used as standards for δ15N, measured relative to atmospheric N2. Long‐term records 

of internal standards yield an analytical precision (standard deviation) of 0.19 ‰ and 0.27 ‰ for 

δ13C and for δ15N, respectively. IAEA-600 caffeine was also used to calibrate each SI run.  

At the NOAA lab, tissue samples were analyzed using a Thermo FlashSmart elemental 

analyzer in line with a Thermo DeltaPlus XP continuous-flow isotope ratio mass spectrometer 

(CF-IRMS; Thermo Scientific, Bremen, Germany). Measured δ13C and δ15N values obtained 

from crab tissue sample analysis were scale calibrated based on contemporaneously analyzed 

isotopic reference materials of accepted δ values relative to the appropriate reference scale acting 

as scale anchors. The isotopic reference materials used were supplied by the IAEA (IAEA‐N‐1, 

δ15N = 0.4±0.2 ‰; IAEA‐CH‐7, δ13C = -32.151±0.050 ‰; IAEA‐CH‐3, δ13C = -24.724±0.041 

‰) and the USGS (USGS25, δ13C = -34.58±0.06 ‰ , δ15N =-0.94±0.16‰; USGS40, δ13C = -

26.389±0.042 ‰ , δ15N = -4.5±0.1 ‰; USGS41, δ13C = +37.626±0.049 ‰ , δ15N = 47.6±0.2 

‰;). Internal laboratory standards were included with all samples as quality controls (all error 

data are SD for purified methionine, Alfa Aesar, δ13C = -34.58±0.06 ‰, δ15N =-0.94±0.16‰; 

homogenized Chinook salmon muscle, NOAA Fisheries, δ13C =-19.27±0.05‰, δ15N 

=15.56±0.13‰). Long‐term records of internal standards yield an analytical precision (standard 

deviation) of 0.11 ‰ and 0.12 ‰ for δ13C and for δ15N, respectively. Relative SI abundance 

values from both labs are reported in δ notation and are given as per mil values (‰) according to 

the following equation (1): 

δX = [(𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − 1] (1000)                                        (1) 

where X represents 13C or 15N and R is 13C/12C or 15N/14N ratio, respectively. 

https://15.56�0.13
https://19.27�0.05
https://0.94�0.16
https://34.58�0.06
https://0.94�0.16
https://34.58�0.06
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The linear lipid correction model presented by Post et al. (2007) was used to correct δ13C 

for lipids present in teleost bait and prey samples. That model uses the following equation 

δ13C𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = δ13C𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + 𝑎𝑎 × 𝐶𝐶: 𝑁𝑁𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + 𝑏𝑏                                         (2) 

where δ13C𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 is the lipid corrected value of δ13C𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏, 𝑎𝑎 and 𝑏𝑏 are parameters obtained from a 

linear relationship between 𝐶𝐶: 𝑁𝑁𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 and tissue lipid content. In this study, we used the values of 

𝑎𝑎 and 𝑏𝑏 proposed by Post et al. 2007 for aquatic animals, which are 0.99 and -3.32, respectively. 

2.5 Data Analysis 

The SIBER (Stable Isotope Bayesian Ellipses in R; Jackson et al. 2011) package was 

used to assess relative variation in δ13C and δ15N ratios and isotopic niche area across sex and 

size classes (sub-legal males (<159mm), legal males (>159mm), small females (<159mm), and 

large females (>159mm)) and across seasons (winter, spring, summer, and fall). Isotopic niche 

was estimated by calculating SEAc (Standard Ellipse Area, corrected for sample size), a metric 

that reports the area of an ellipse drawn around the centroid, containing 40% of the sample points 

first for each of the sex-size classes (with winter samples excluded because no female samples 

were collected during the winter). The directionality and magnitude of the differences between 

each class were approximated by calculating the pairwise polar vectors among all groups. These 

vectors were visualized using polar histograms. Next, the polar coordinates were converted into 

cartesian space using the following function: 

𝑓𝑓(𝑟𝑟, 𝜃𝜃) = (𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 𝑟𝑟 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃) 

The median angle and median length of each class-wise comparison in cartesian space were then 

reported following Jackson (2021). Based on the results of the class-wise comparisons, the same 

SEAc procedure was repeated comparing all male crabs across four seasons and all female crabs 
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across three seasons. Sexes were not subdivided into size classes due to limited sample size when 

considering individual seasons. 

The SI signature for each sample area in each region was summarized according to mean 

δ13C and δ15N ratios ± 1 standard deviation. The mean ± 1 standard deviation was then calculated 

for each sex within each region. Regional means ± 1 standard deviation were calculated for all 

samples within each region (Table 1).  

Analyses of variance (ANOVAs) for δ13C and δ15N ratios of all crab samples were 

performed for males (n = 250) and females (n = 98) separately with region and season as main 

factors and site nested within region. For males, we also considered size (</≥ 159 mm) as a 

factor. Normality was tested by plotting model residuals and equal variance was tested using 

Levene’s Test for Homogeneity of Variance. Post hoc Tukey tests were performed on the 

ANOVA outputs to further explore difference among levels of significant factors. A one-way 

ANOVA was also used to assess if, on average, bait and prey differed significantly in δ13C or 

δ15N. The significance level, α, was set at 0.05 for all analyses. All data analyses were conducted 

in R Version 4.0.4 in RStudio. 

Although Dungeness crab tissue turnover rates are unknown, studies on other decapod 

species suggest that their muscle tissues turnover after between 50-70 days (Møller et al. 2008, 

Herbon & Nordhaus 2013, Bui & Lee 2014). In the present study, Dungeness crab samples were 

collects ~58-98 days apart. Therefore, we approximate tissue samples collected in any given 

season to be representative of feeding habits in the previous season. 
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3. Results 

3.1 Gut Content Analysis 

The most frequently occurring gut items overall from greatest to least were teleost, 

bivalve, unidentified soft tissue, decapod, and gastropod. Less frequently occurring items 

consisted of macroalgae, sand, bryozoans, echinoderms, wood debris, and seagrass (Table 2). 4% 

of guts were completely empty. On average, the frequency of occurrence of teleost parts and soft 

tissue (ST) was consistent across seasons; however, there was a great deal of variability in these 

items among sites especially for teleost parts (Figure 2; Table 2). The frequency of occurrence of 

the other items and empty guts varied seasonally (spring, summer, and fall guts only) and across 

sites within each season. 

In the spring, an average of 24% of guts contained teleost parts including scales, bones, 

and fin rays (Figure 2), but only 3% of stomachs collected from Garibaldi contained teleost 

fragments while 43% of those from Pacific City did (Table 2). The Pacific City samples also 

contained the highest FO of soft tissue (23%), compared to the other spring sites (Garibaldi = 

10%; Newport = 13%). The FO of gastropods was higher Newport (33%) than at the other two 

sites (Garibaldi = 7%; Pacific City = 3%). An average of 35% of spring guts were completely 

empty, which is over four times greater than the mean percent of empty stomachs in the other 

two seasons (summer = 8%; fall = 0%). 

Summer had the highest proportion of soft tissue (24%), decapods (30%), macroalgae 

(10%), bryozoans (12%), echinoderms (4%), wood (3%), and seagrass (6%) relative to other 

seasons (Figure 2). June Newport guts contained the highest frequency of soft tissue (37%), July 

Garibaldi guts contained the highest frequency of decapods (63%), and July Reedsport guts 

contained the highest frequency of microalgae (28%), seagrass (17%), bryozoans (12%), and 
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wood (7%) (Table 2). In fact, macroalgae was over four times more frequent at Reedsport than 

any other site in any season. 67% of the summer Garibaldi sample contained teleost parts, up 

from 3% at the same site in the spring and over twice as frequently as any other site in the 

summer (Newport = 10%; Cape Perpetua = 7%; Reedsport = 24%). The FO of sand at all the 

summer sites was ≥ 3%, whereas some of the sites in other seasons were devoid of sand. 

Fall guts contained the highest mean proportion of teleost (28%), bivalve (31%), and 

gastropod (28%), and sand (10%) compared to spring and summer (Figure 2). The October Port 

Orford samples contained the highest frequency of teleost fragments (77%), bivalves (37%), and 

sand (33%) compared to any other site in any season (Table 2). All four fall sites had a FO of 

gastropods between 20-37%, whereas the FO of gastropods in the other two seasons had wider 

ranges and lower means (spring = 3-33%, 14%; summer = 3-17%, 10%). The most frequently 

found gastropod part within the fall samples was the operculum, which unfortunately could not 

be used to identify the prey type down to the species level. Sand was over four times more 

frequent within October Port Orford samples than any other site in any season. 

3.2 Stable Isotope Analysis 

3.2.1 δ13C and δ15N of Fishery Bait and Benthic Prey 

While there was a great deal of overlap in δ13C and δ15N of the expected bait and prey species 

(Figure 3), on average, the bait species were higher in δ15N and more depleted in δ13C (Table 3). 

The difference in average isotopic ratio was marginally statistically significant for δ15N (F1,13 = 

4.70, p = 0.049) while not statistically significant for δ13C (F1,13 = 2.60, p = 0.131). Commonly 

used bait species Black rockfish (Sebastes melanops), Pacific mackerel (Scomber japonicus), and 

Pacific sardines (Sardinops sagax caerulea) had the highest relative mean δ15N values. The squid 
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Illex sp. was low in δ15N, indistinguishable from many of the common invertebrate benthic prey 

species, but more depleted in δ13C as expected for pelagic species as were mackerel (Scomber 

japonicus) and the one salmon sample. In terms of δ13C, the frequent bait species cockle clam 

(Clinocardium nuttallii) and razor clam (Siliqua patula) were nearly identical to the composite of 

small offshore bivalve species analyzed. Juvenile Cancer magister under 25mm CW, which were 

included due to the reported frequency of cannibalism within the Dungeness crab population, had 

the highest mean δ13C (-15.74, similar in value to the adults sampled) compared to all other bait 

and prey sampled, except for eelgrass, at -11.04. Notably, the C. magister under 25mm CW had 

much lower δ15N (10.22) than the sampled adults.    

3.2.2 Dungeness Crab Isotopic Niche 

The isotopic niches of each Dungeness crab sex and size class varied from each other, 

although the magnitude and directionality of those variations differed between the two sexes. 

The Standard Ellipse encompassing 40% of the samples around the centroid of the legal male 

ellipse showed to greatest degree of overlap with the sub-legal male ellipse and the least overlap 

with the large females (Figure 4a). Across sizes and sexes the tissue of legal males contained the 

highest mean δ13C values (-15.69 ± 0.49) and the lowest mean δ15N values (13.22 ± 0.52) 

(Figure 4a) while the large females contained the lowest mean δ13C values (-16.35 ± 0.60) and 

the highest mean δ15N values (13.75 ± 0.60) (Table 4) with a median vector distance of 0.924 

and a median vector angle of 2.20 between LM and LF (Figure 4b). The mean δ13C value of sub-

legal males (-16.01 ± 0.58) was lower than legal males, while δ15N was similar at 13.32 ± 0.48. 

The small female group showed still lower δ13C (-16.35 ± 0.59; like large females) and similar 

δ15N (13.34 ± 0.50) compared to sub-legal males. In descending order by median vector distance 
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followed by median vector angle, the remaining pair-wise outputs were LM vs. SF (0.76; -1.41), 

LM vs. SM (0.57; 2.47), LF vs. SF (0.46; 1.21), LF vs. SM (0.45; -1.36), and lastly SF vs. SM 

(0.35; 1.64). SEAc values were slightly larger for females (LF = 0.94; SF = 0.94) than males 

with legal-sized males having the smallest ellipse area (LM = 0.83; SM = 0.89). 

The ellipses comparing δ13C and δ15N ratios of all females across three seasons show 

mean δ15N decreased from a high of 13.98 ± 0.58 in the spring through summer to a low of 13.07 

± 0.53 in the fall, while δ13C remained similar (Figure 5a), particularly in the north and at least 

between summer and fall in the south (Figure 6). Median pairwise vector distances were greatest 

between spring and summer (0.96), followed by spring and fall (0.61), and summer and fall 

(0.49). SEAc, which approximates the relative size of a consumer’s trophic niche, was largest in 

the fall (1.19), followed by the spring (0.67) and the summer (0.51) (Table 4). 

ANOVA of average isotopic values of female crabs confirmed season to be highly 

statistically significant for δ15N (F2,88 = 33.03, p < 0.001) with significant differences in each 

pairwise comparison of seasons (Tukey HSD all p < 0.001). There was no effect of region alone 

(F2,88 = 2.07, p = 0.123) while there was a significant interaction between region and season 

(F3,88 = 6.07, p < 0.001) likely due to the apparent lack of seasonal variability in the Central 

region (Figure 6). There was some variability of site within region for δ15N (F2,88 = 4.33, p = 

0.016). In contrast, there was no effect of season on δ13C (F2,88 = 1.72, p = 0.185) while there 

were strong regional differences (F2,88 = 18.83, p < 0.001) due to females from the southern 

region having much lower δ13C values (Figure 6). There was no interaction of region and season 

for δ13C in females (F3,88 = 4.33, p = 0.464) and only marginal influence of site within region 

(F2,88 = 4.33, p = 0.055). 
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Trophic variation of all males across four seasons showed the highest relative mean δ13C 

ratios (-15.40 ± 0.41) in the spring with the rest of the seasons having high overlap and the 

lowest relative mean δ15N ratios in the fall (13.06 ± 0.65) with the rest of the seasons having high 

overlap (Figure 5b; Table 4). Median pairwise vector distance was greatest between spring and 

fall (0.67), followed by spring vs. summer (0.56), spring vs. winter (0.51), summer vs. fall 

(0.34), fall vs. winter (0.29), and summer vs. winter (0.24). SEAc was greatest for fall (1.06), 

followed by summer (0.74), winter (0.68), and spring (0.48) (Table 4). 

ANOVA of average isotopic values of male crabs confirmed season to be statistically 

significant for δ13C (F3,235 = 15.91, p < 0.001), with spring higher overall than other seasons and 

the other seasons being statistically indistinguishable. There also were regional differences in 

δ13C for male crabs (F2,235 = 39.93, p < 0.001) with each of the regions significantly different 

from one another (with the south having the lowest δ13C as in females) and no significant effect 

of site within region (F4,235 = 1.99, p = 0.096). There was a significant interaction between region 

and season (F6,235 = 2.92, p = 0.009) likely again due to the apparent lack of seasonal variability 

in the Central region and with winter higher than spring in the southern region (Figure 6). δ13C 

also differed between legal and sublegal sized male crabs (F1,235 = 16.10, p < 0.001) with the 

sublegal males generally more depleted in δ13C. 

δ15N varied significantly among seasons (F3,235 = 5.01, p = 0.003; Tukey HSD indicates 

summer different from fall) and regions (F2,235 = 50.25, p < 0.001) for males; however, the 

interaction of season and region was highly significant (F6,235 = 4.48, p < 0.001), due to seasonal 

variability in δ15N being only apparent in the South (Figure 6). There was no significant effect of 

site within region (F4,235 = 0.45, p = 0.776). δ15N also differed between legal and sublegal sized 

male crabs (F1,235 = 16.10, p = 0.023) with the sublegal males generally more enriched in δ15N. 
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4. Discussion 

Three aspects of the results provided the strongest evidence for seasonal consumption of 

commercial fishery bait by Dungeness crab. First, sampled females showed high springtime δ15N 

values declining through the fall. This trend could be indicative of overall higher trophic level 

bait consumption during the peak commercial fishing season, followed by feeding on lower 

trophic level wild prey in the fall. Second, a high proportion of empty guts were observed in the 

spring compared to the summer and fall. Empty guts could reflect consumption of soft tissue bait 

that doesn’t leave as many hard structures behind compared to wild prey. Third, both male and 

female crabs showed the largest approximated trophic niches in the fall compared to the other 

seasons, which could be indicative of broader foraging for wild prey in the absence of 

abundantly available bait. 

However, non-fisheries dependent factors also undoubtedly influence seasonal variation 

in the feeding ecology of Dungeness crab, given the dynamic nature of benthic food webs at the 

marine-terrestrial interface. A better understanding of the species’ feeding strategy would aid in 

clarifying the influence of anthropogenic organic matter subsidies on the Cancer magister 

population. This study contributes to that understanding by suggesting an underestimation of 

both lower trophic level and carbon-enriched food sources in previous Dungeness crab feeding 

studies and demonstrating strong regional variations in the crabs’ δ15N and δ13C values. 

We hypothesized that the strongest isotopic bait signature would be evident in the spring, 

following the wintertime peak in fishing effort, characterized by relatively high δ15N and 

depleted δ13C due to the use of higher tropic level, pelagic species such as herring, mackerel, and 

sardines. The seasonal variation in δ15N of sampled female crabs supported this hypothesis, with 
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the highest mean values in the spring, declining through summer and fall. However, average δ13C 

values varied little across seasons for females, suggesting either consistent food source 

provenance or shifting sources creating a similar cumulative signature over time. In males, mean 

δ15N did not vary seasonally and δ13C was relatively enriched in the springtime compared to all 

other seasons, which contradicts the hypothesis of depleted δ13C through pelagic bait 

consumption.  

Commercial fishery baiting practices could explain the differences in seasonal isotopic 

variation between males and females. The Oregon Department of Fish and Wildlife (ODFW) 

only permits harvest of male crabs over 159 mm CW; however, females also enter the pots. 

Fishermen return captured females to the ocean where they can eat discarded bait, reenter pots, 

and consume more bait. Repeated consumption of higher trophic level bait species would lead to 

δ15N enrichment in females compared to legal males. However, sub-legal males (<159 mm CW) 

are also caught and returned to the ocean. If repeated capture and bait consumption does increase 

δ15N, this impact would be evident in both sublegal males and females.  

In this study, we did not see seasonal nitrogen enrichment in sublegal males, however, 

spring sublegal males (n = 9) were only sampled at the Newport site (Central), which showed the 

lowest overall seasonal variation of any site in the study. The small sample size for spring 

sublegal males means that the average values for all spring males combined are weighted 

towards legal males (n = 60). On the other hand, sub-legal males did have overall higher nitrogen 

than legal males, supporting the hypothesis of enhancement due to repeated bait access as 

compared to legal-sized males. Further study would be required to discern possible nitrogen 

enrichment of sublegal males in the spring. 
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Although our ANOVAS on δ15N and δ13C of bait vs. prey did show significantly higher 

δ15N in prey than bait, the isotopic composition of bait inputs likely varies dynamically given the 

wide variety of baits used by the commercial Dungeness crab fishery and the temporal variation 

in fishing effort. According to Bostrom et al. (2018), the three most used bait types are squid, 

clams, and sardines, all of which occupy distinct ecological niches and trophic positions. Some 

feeding on bait could be difficult to discern from wild prey consumption using consumer isotope 

ratios. For instance, a Dungeness crab consuming only razor clams from commercial crab pots 

would be difficult to differentiate from a Dungeness crab feeding only on small, naturally 

occurring bivalves. Information on the types, amounts, and spatiotemporal distribution of 

commercial bait use would help to develop a more dynamic and accurate representation of 

variable bait inputs. 

Non-fishery related factors, including site fidelity and reproductive strategy, could also 

contribute to the highly statistically significant (p < 0.001) differences in δ13C and δ15N of male 

versus female Dungeness crabs observed in this study. Some evidence suggests that female crabs 

inhabit smaller ranges than males, which could lead to less variation in δ13C among females 

compared to males. Stone & O’Clair (2001) found that female Dungeness crabs in Fritz Cove, 

Southeast Alaska typically only ranged ~1.5 km outside the cove while their male counterparts 

ranged ~7.2 km. Cerdal & Wolff (1993) hypothesized that observed heterogeneous diets of male 

and female Cancer polyodon, a closely related species to Cancer magister, were the result of 

relatively mobile male crabs protecting a “harem” of sedentary female crabs (Orensanz & 

Galucci 1988, Wolff & Soto 1992). The mobile males would be more likely to graze on broader 

suite of available epibenthic sources, while the females would be more likely to exhibit predatory 

behavior within a reduced range. Although mate guarding has not been observed in Cancer 
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magister, some authors hypothesize that it likely occurs (Christy 1987, Smith et al. 1994). Higher 

rates of predatory behavior among females could lead the enriched δ15N if their prey occupy 

higher trophic positions than the epibenthic foods males consume. Furthermore, females form 

dense brooding aggregations (Diamond & Hankin 1985, Armstrong et al. 1987, O’Clair et al. 

1996, Scheding et al. 2001), burying themselves in sediment and reducing feeding and foraging. 

Stone & O’Clair (2002) documented female Dungeness in Southeast Alaska entering a period of 

relative inactivity during the winter and early spring at around 16 m depth, especially if they 

were carrying eggs. These periods of starvation would likely result in distinct isotopic signatures 

within the tissues of female vs. male crabs, although further study would be required to 

determine the magnitude and directionality of this variation. 

Seasonal variation in both the percentage of empty guts and SEAc also provide evidence 

for feeding on commercial fishery bait. In both sexes, the SEAc values approximating trophic 

niche were the largest among crabs collected in the fall, which is consistent with broad foraging 

due to bait scarcity in the summer. By far the greatest proportion of empty crab guts were 

sampled in the spring, while none of the fall guts were empty. This difference could be the result 

of feeding on soft baits (like squid, fish, and razor clam flesh) during the fishery season, which 

can be digested and extruded relatively quickly versus food sources with hard parts (like small 

invertebrate prey) in the fall. The high proportion of empty guts in the spring was surprising 

given our hypothesis that cannibalism would contribute heavily to crab diets during that season. 

In fact, we did not find any evidence of cannibalism within the guts. This result could be 

explained by the observation that cannibalism occurs most frequently among small crabs with 

CW < 60mm (Stevens et al. 1982). 
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If Dungeness crab feed seasonally on higher trophic level bait inputs, this feeding could 

impact their growth rates and/or reproduction, which could have profound implications for the 

productivity of the commercial fishery. Based on the estimated amount of herring bait consumed 

by American lobster (Homarus americanus) in the Gulf of Maine and the calculated growth rates 

of that species, Saila et al. (2002) approximated that secondary productivity resulting from 

commercial bait consumption accounted for up to one third of in-shore landings within that 

fishery. Additionally, Kennish (1997) found that seasonal variation in food availability impacted 

the reproductive output and body condition of an herbivorous crab, Grapsus albolineatus, off 

Hong Kong. If fishery bait inputs contribute to Dungeness crab productivity, reducing fishing 

effort could cause declines in that productivity by reducing caloric availability on the seafloor. 

In recent years, domoic acid outbreaks and concerns regarding whale entanglement have 

caused commercial Dungeness crab fishery closures. A naturally occurring algae, Psuedo-

nitzschia australis, produces the neurotoxin domoic acid, which causes amnesic shellfish 

poisoning (ASP). This toxin accumulates in crab tissue, rendering it temporarily unsuitable for 

human consumption. Evidence suggests that climactic-scale marine heat waves off the west coast 

correlate to increased domoic acid production (McKibben 2016) that could become more 

frequent as ocean temperatures rise. Regulatory bodies close Dungeness crab fisheries during 

domoic acid outbreaks, a fact that had particularly catastrophic effects on the 2015-2016 fishery 

season, when domoic acid levels were unusually high. If there is less bait input, crabs might eat 

more benthic algae, resulting in even higher toxin loads. 

Whale entanglement in crabbing gear, which has been on the rise since 2014, shortened 

the 2018-2019 season. Prior to 2014, an average of fewer than 10 west coast whale 

entanglements were reported each year; between 2015 and 2018 that number has increased to an 
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average of 44 confirmed entanglements per year (NOAA 201). This increased threat to protected 

marine mammals has caused the California, Oregon, and Washington Departments of Fish and 

Wildlife to shorten commercial Dungeness crab seasons and in some cases reduce the amount of 

allowable gear in the water (ODFW 2019), which would again reduce bait inputs and could 

affect productivity. 

Although springtime δ15N enrichment in female crabs, empty gut percentages, and the 

SEAc values all support the idea that bait subsidies influence variation in Dungeness crab 

feeding ecology, non-fishery influences likely play an even greater role in spatiotemporal 

isotopic variation. Physical mixing in estuaries and primary production in coastal waters drives 

fluctuations in the sources of organic materials (Hughes et al. 2000, Luís Antonio et al. 2012) 

available for benthic organisms to eat. The high degree of isotopic variability within Dungeness 

crabs and their food sources observed in this study agrees well with previous studies of 

macroinvertebrate scavengers at this fluctuating land-sea interface. An analysis of seasonal 

variation in the trophic niches of three decapod species, Upogebia africana, Callichirus kraussi, 

and Palaeomon peringueyi, in the Kowie River Estuary of South Africa indicated that their diets 

shifted temporally according to changes in food availability (Antonio & Richoux 2014). 

Cannicci et al. (2007) found that in the Mediterranean, the intertidal crab Pachygrapsus 

marmoratus shifts seasonally between carnivory and herbivory, taking advantage of shifting 

marine and terrestrial inputs as food sources. All these examples relate to species that spend most 

of their lives within estuaries and/or the intertidal zone. Researchers have focused less research 

on seasonal variation in the feeding behaviors of species, like Cancer magister, that primarily 

inhabit estuaries as juveniles but then travel back and forth into the ocean as adults. 
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Gaining a better understanding of overall Dungeness crab feeding strategies would allow 

organic matter subsidies from the commercial fishery to be more discernable. This study 

advances our understanding of Dungeness crab diets by suggesting a previous underestimation of 

both lower trophic level and carbon-enriched food. Additionally, the strong regional variations in 

the crabs’ δ15N and δ13C values demonstrate the complexity of the isotopic landscape and the 

importance of avoiding broad generalizations about the isotopic compositions of consumer 

species from different geographic areas. 

Many of the crab guts contained lower trophic level food sources, especially at the 

summer Reedsport (South) site, which stood out from all other sample sites across regions and 

seasons with the highest mean proportion of their guts contained macroalgae (28%), seagrass 

(Zostera marina) (17%), and wood (7%) with 8% containing sand. Numerous authors have 

suggested that lower trophic level food sources, such as benthic microalgae, are often 

underrepresented in Dungeness crab feeding studies due to the difficulty of identifying food 

sources that lack hard structures. Jensen & Asplen (1998) hypothesized that filamentous diatoms, 

eelgrass epiphytes, and algae could provide food during periods of prey scarcity or intense 

competition between densely recruited juveniles. They observed early instar crabs feeding on 

eelgrass epiphytes in Puget Sound. In British Columbia, MacKay (1942) reported algae as the 

fourth most important food source for Dungeness crabs behind crustaceans, bivalves, and 

polychaetes. Cerdal & Wolff (1993) observed at least five macroalgae species in Cancer 

polyodon guts in a Chilean bay, including Gracilaria sp., Polysiphonia sp., Ulva sp, an 

unidentified Phaeophyta, and an unidentified Rhodophyta. According to Luís Antonio et al. 

(2012), coastal benthic macroinvertebrates, including crabs, utilized microalgae, terrestrial leaf 

litter, and riverine particulate organic matter as food sources in shallow waters of the Tango Sea 
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off Japan. Additionally, several researchers have cautioned against ignoring sand in gut contents, 

suggesting that crabs could eat it on purpose to capture calories from epibenthic microalgae 

(Jensen & Asplen 1998, Haefner 1990). 

In addition to dynamic seasonal variation, the stable isotope values also showed 

statistically significant regional variation within and across seasons. This regionality suggests 

that caution should be used when making assumptions about Dungeness crab isotopic values and 

the magnitude and directionality of seasonal changes in those values within a given region based 

on data from a different geographic area. For instance, the δ15N values of male crabs in the South 

region during the fall were significantly lower than any other region or season; indeed, mean 

δ13C and δ15N values were consistently the lowest in the South. The distinctively low δ15N and 

δ13C values observed at the Port Orford site (Table 4) are likely linked to a shift in the north-

south shift in oceanographic conditions and invertebrate recruitment patterns in the Cape Arago-

Cape Blanco region (Broitman et al. 2008). If we had only sampled in the South region, our 

estimates of mean isotopic values of Dungeness crabs would also have been significantly lower. 

Similarly, Boecklen et al. (2011) urge that ecologists should avoid relying on literature for key 

model parameters, consider “multiple sources of variation in isotopic signatures” beyond those 

being tested, be sure not to make over-generalized inferences about diverse systems. 

In assessing these results, several potential confounding factors must be carefully 

considered. First, given the dynamic nature of coastal food webs, adult Dungeness crab and wild 

prey samples would ideally have been collected in the same locations and time periods. 

However, COVID-19 travel restrictions and partially fisheries-dependent sample collection made 

that procedure impossible. As a result, prey samples within this study provide a general 

understanding of their isotopic composition compared to fishery bait, rather than a precise 
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snapshot of δ15N and δ13C ratios at any given place and point in time. If adult Dungeness crab 

and prey samples could be collected at the same place and time, Bayesian stable isotope mixing 

models could potentially be used to gain more precise information about Dungeness crab dietary 

composition and trophic position. 

Another factor to consider is that the presence of inorganic carbon and lipids in stable 

isotope samples sometimes confounds the interpretation of δ15N and δ13C ratios in food web 

studies; acid washing of inorganic carbon and lipid extraction or quantitative correct are often 

used to reduce these potential impacts. However, literature indicates that lipid extraction does not 

have a significant effect on δ15N nor δ13C in crustacean muscle tissues (Bodin et al. 2007), 

therefore neither lipid extraction nor arithmetic lipid correction was used for the adult Dungeness 

crab samples. Additionally, all inorganic carbon structures in the adult Dungeness crab samples 

were carefully excluded by hand, and therefore are unlikely to impact the results. 

As for the bait and prey samples, inorganic carbon structures were excluded except in the 

crustaceans prey (Crangon sp., cumaceans (Diastylidae), hermit crabs (Paguroidea), and juvenile 

Cancer magister (CW<25mm)). These prey species were not acid washed, which could 

confound the interpretation of their δ13C ratios. However, Bunn et al. 1995 found that acid 

washing one species of shrimp did not affect mean δ13C ratios in that species but did affect mean 

δ15N. For crustacean prey, as with adult Dungeness crab, lipid extraction has been shown to have 

no significant impact on δ15N nor δ13C (Bodin et al. 2007), and therefore neither lipid extractions 

nor arithmetic corrections were applied to crustacean prey samples. Marine invertebrates, 

including crustaceans and bivalves, tend to store carbon as glycogen rather than lipids, which 

potentially reduces the need for lipid extraction (Patterson & Carmichael 2016). Lipids in teleost 

fish, on the other hand, are widely known to alter the δ13C ratios compared to results derived 
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from pure protein samples; therefore, we applied a linear correction model from Post et al. 2007 

on all teleost bait and prey samples. 

This analysis highlighted the inherent complexity of coastal marine and estuarine 

ecosystems, which create dynamic contexts in which to interpret evidence for seasonal 

fluctuations in the consumption of commercial fishery bait by Dungeness crabs. Despite and 

perhaps because of this complexity, the results contribute to the pre-existing body of knowledge 

about Dungeness crab feeding ecology, especially by characterizing differences between the 

isotopic niches of sampled male and female crabs, demonstrating strong seasonal and regional 

variations in isotopic tissue composition, and indicating that previous Dungeness crab feeding 

studies may have underestimated the importance of lower trophic level food sources. 

Additionally, this study revealed numerous opportunities to advance our understanding of 

benthic food webs at the estuarine-marine gradient and the influence of anthropogenic organic 

matter subsidies on Dungeness crabs within those systems. The isotopic composition of female 

Dungeness crabs as the exit their brooding period, possible nitrogen enrichment of sublegal male 

crabs through repeated capture, and the identification of micro and macroalgal species within 

crab stomachs are all topics that warrant further investigation. 

5. Conclusion 

Despite the economic and ecological importance of Cancer magister off the Oregon coast 

and on the west coast of the United States in general, this was the first study to look for evidence 

of an impact of commercial Dungeness crab fishery bait on the feeding ecology of that species. It 

was also the first study to investigate variation in the isotopic niches of male and female 

Dungeness crabs. The results demonstrate the ecological complexity of feeding pathways across 
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674 the estuarine-coastal zone, with substantial variation in isotopic composition in crab tissues and 

gut contents across regions, seasons,  sexes, and size classes. Female crabs in the North region 

showed the  strongest evidence for trophic enrichment through bait consumption in the spring. 

The gut contents added support to a growing body of literature suggesting that lower  trophic  

level  sources must be included in future Dungeness crab diet studies to gain a more complete 

understanding of their feeding strategies. Laboratory studies  to determine  stable isotope  trophic  

discrimination values and tissue  turnover rates would help to further advance such dietary 

analyses.  Additionally, more specific  information about spatiotemporal variation in commercial 

fishery bait inputs and the relative caloric values of wild prey and bait would advance our  

understanding of the role of bait in Dungeness crab diets. The further progression of this work 

would have implications for both our knowledge of benthic trophodynamics and Oregon’s  

coastal economy.    
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931 Table  1: Dungeness crab  collected  sample sizes  by sex,  carapace width, and season.   

937 

Legal Males  
 (>159 mm)  

Sub-Legal Males  
 (<159 mm) 

Large Females 
 (>159 mm) 

 932 Small Females 
 (<159 mm)  933

 Winter  50  3  0  0 

 Spring  50  9  18  10  934 

Summer    31  44  10  33  935 
 Fall  38  25  11  16 

 TOTAL  169  81  39  59  936 
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938 Table 2: Frequency of occurrence (FO) of identified gut content items and empty guts within adult Dungeness crabs sampled across  
three seasons (spring, summer, and fall 2020) within three regions of the  Oregon coast. FO is calculated by  dividing the number of  
crab guts that contained a particular item (or was empty) at each sample  site and date divided by the total number of crabs  collected  
at that sample site and date.  

939 
940 
941 

942 

943 
944 

 Date  Region  n  Location  Teleost  Bivalvia  Soft 
 Tissue 

 Decapoda Gastro-
 poda 

Macro-
 algae 

 Sand  Bryozoa Echino-
 derm 

 Wood  Seagrass  Empty 

 Spring 
 3/12/2020  North  30  Garibaldi  0.03  0.17  0.1  0.1  0.07  0.03  0  0.07  0  0.03  0.03  0.43 
 3/25/2020  North  30   Pacific City  0.43  0.13  0.23  0.07  0.03  0.03  0.03  0  0  0  0  0.23 
 4/3/2020  Central  30  Newport  0.27  0.17  0.13  0.07  0.33  0  0  0  0  0  0  0.4 

 Average  0.24  0.16  0.16  0.08  0.14  0.02  0.01  0.02  0  0.01  0.01  0.35 
 Summer 

 6/10/2020  Central  30  Newport  0.1  0.2  0.37  0.13  0.17  0.07  0.07  0  0.07  0  0.03  0.2 
 7/1/2020  North  30  Garibaldi  0.67  0.27  0.2  0.63  0.03  0.03  0.1  0.07  0.07  0  0  0 
 7/9/2020  Central  30  C. Perpetua  0.07  0.33  0.1  0.30  0.07  0.03  0.03  0  0.03  0.07  0.03  0.13 
 7/10/2020  South  25  Reedsport  0.24  0.24  0.28  0.12  0.12  0.28  0.08  0.12  0  0.07  0.17  0.12 

 Average  0.27  0.26  0.24  0.30  0.1  0.1  0.07  0.05  0.04  0.03  0.06  0.08 
 Fall 

 10/15/2020  North  30  Garibaldi  0.3  0.33  0.07  0.2  0.37  0.1  0.07  0.07  0  0  0  0 
 10/17/2020  Central  15  C. Perpetua  0  0.2  0.13  0.13  0.20  0.2  0  0  0.07  0  0  0 
 10/17/2020  Central  30  Newport  0.03  0.33  0.17  0.13  0.27  0  0  0  0  0  0  0 
 10/30/2020  South  30  Port Orford  0.77  0.37  0.5  0.13  0.30  0.07  0.33  0  0  0  0  0 

 Average  0.28  0.31  0.22  0.15  0.28  0.09  0.1  0.02  0.02  0  0  0 
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945 Table 2: Sample size (n), mean, and standard deviation (σ) of δ13C and δ15N ratios  in sampled  
commercial  Dungeness crab fishery bait  and prey species. Wherever possible, inorganic carbon 
structures were excluded from the samples. Crustacean prey was processed whole, which could 
confound the interpretation of  δ13C and δ15N. δ13C in teleost  bait and prey and mink were  
arithmetically lipid corrected according to Post  et al. (2007) and are marked with an apostrophe  
after the value below. The presence  of lipids in marine invertebrates has no significant impact on 
δ13C and δ15N (Bodin et al. 2007), and therefore lipid corrections were not applied to those  
samples. The rows in gray contain  samples that  were processed at the Oregon State University 
(OSU) stable isotope lab, whereas the rows in white contain samples that  were processed at  
NOAA’s Alaska Fisheries Science Center. “n.d.”  indicates  no data.   

946 
947 
948 
949 
950 
951 
952 
953 
954 

955 

956 

957 

958 

959 

Source   n δ13C   σ δ15N  σ 

Prey  

 Bivalve (<20mm)  10  -17.00  0.83  9.71  0.16 

   Shrimp (Crangon sp.)  17  -16.58  1.33  11.66  0.65 

  Cumacean (Diastylidae)  15  -16.91  0.74  8.07  0.67 

 Eelgrass (Zostera marina)  4  -11.04 1.11  7.07  0.46 

  Hermit Crab (Paguroidea)  10  -16.54  1.31  9.42  0.50 

  C. magister (CW<25mm)  15  -15.74  1.13  10.22  0.71 

   Olive Snail (Callianax sp.)  16  -17.80  0.33  9.86  0.59 

  Pacific Sanddab (Citharichthys sordidus)  5  -21.07’  0.70’  11.43  0.35 

 Bait 

 Cockle (Clinocardium nuttallii)  7  -16.84  0.15  9.20  0.19 

 Herring (Clupea pallasii)  10  -14.71’  1.74’  9.42  0.50 

  Pacific Razor Clam (Siliqua patula)  10  -17.00  0.22  9.26  0.22 

   Squid (Illex sp.)  11  -19.00’ 1.61’  11.36’  0.77’ 

 Mackerel (Scomber japonicus)  11  -19.17’  0.97’  14.75  0.32 

  Mink (Neovison vison)  10  -17.16’  0.65’  9.75  0.41 

 Black Rockfish (Sebastes melanops)  7  -18.09’  0.21’  14.95  0.58 

  Salmon (Oncorhynchus sp.)  1  -21.51’  n.d.  11.25  n.d. 

 Sardine (Sardinops sagax caerulea)  11  -17.38’  0.29’  13.75  0.19 
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960 Table 3: Contains  the sample size (n), mean, and sample standard deviation (σ) of  δ13C and δ15N  
ratios for  sampled adult  Dungeness crabs, divided by  sex, across four seasons  (December 2019-
May 2021) and three regions of the  Oregon coast. It also includes  Standard Ellipse Area 
corrected by sample size  for all  crabs collected at each site and date, divided by sex, region, and 
season. Inorganic carbon structures were excluded from the samples; only leg tissue was 
included for all  samples. Gray rows contain samples run at  the OSU stable isotope lab, while all  
other samples were analyzed at  the NOAA’s Alaska Fisheries Science Center.  “n.d.”  indicates  
no data.   

961 
962 
963 
964 
965 
966 
967 

δ13C v. V-PDB ± 
 Date  Region  Area  n   σ   δ15N v.   Air   ± σ  SEAc  

 M   F  M  F  M  F  M  F 
 Spring 

-15.45 -16.17 13.44  13.87 ± 
 3/12/2020  North Garibaldi   21  9  ± 0.35  ± 0.40  ± 0.38  0.49  0.54  0.62 

-15.36 -16.42 13.39  14.42 ± 
 3/25/2020  North   Pacific City  20  10  ± 0.30  ± 0.49  ± 0.33  0.38  0.79  0.45 

-15.36 -16.14 13.16  13.58 ± 
 4/3/2020  Central  Newport  18  9  ± 0.56  ± 0.43  ± 0.40  0.55  0.90  0.68 

-16.13 12.65 
 5/18/2021  South  Port Orford  10  n.d  ± 0.25  n.d.  ± 0.42  n.d.   0.26  n.d. 

 Summer 
-16.66 -16.45 13.62  13.54 ± 

 7/1/2020  North  Garibaldi  20  10  ± 1.22  ± 0.19  ± 0.34  0.23  0.97  0.16 
-15.44 -15.99 13.25  13.40 ± 

 6/10/2020  Central  Newport  20  10  ± 0.26  ± 0.62  ± 0.57  0.45  0.80  0.96 

 7/9/2020  Central 
 Cape 

 Perpetua  22  11 
-15.90 

 ± 0.54 
-16.43 

 ± 0.31 
13.27 

 ± 0.43 
 13.49 ± 

 0.27  0.57  0.29 
-16.34 -16.87 13.24  13.45 ± 

 7/10/2020  South  Reedsport  13  12  ± 0.47  ± 0.45  ± 0.45  0.27  0.52  0.42 
 Fall 

-16.04 -16.07 13.48  13.00 ± 
 10/15/2020  North  Garibaldi  20  10  ± 0.55  ± 0.83  ± 0.52  0.54  1.16  1.15 

-15.58 -15.90 13.29  13.50 ± 
 10/17/2020  Central  Newport  23  7  ± 0.33  ± 0.16  ± 0.38  0.32  0.37  0.17 

-16.38 -16.91 12.41  12.85 ± 
 10/30/2020  South  Port Orford  20  10  ± 0.30  ± 0.27  ± 0.52  0.51  0.49  0.42 

 Winter 
-15.95 13.76 

 12/16/2019  North  Astoria  10  n.d.  ± 0.56  n.d.  ± 0.32  n.d.  0.61  n.d. 
-15.47 13.12 

 12/16/2019  Central  Newport  7  n.d.  ± 0.40  n.d.  ± 0.34  n.d.  0.38  n.d. 

 12/16/2019  Central 
 Cape 

 Perpetua  10  n.d. 
-15.54 

 ± 0.38  n.d. 
13.28 

 ± 0.31  n.d.  0.42  n.d. 
-15.94 13.17 

 12/16/2019  South  Langlois  10  n.d.  ± 0.31  n.d.  ± 0.48  n.d.  0.14  n.d. 
-15.95 13.06 

 12/16/2019  South  Cape Arago  9  n.d.  ± 0.47  n.d.  ± 0.48  n.d.  0.64  n.d. 
-16.31 12.93 

 12/16/2019  South  Port Orford  7  n.d.  ± 0.30  n.d.  ± 0.52  n.d.  0.65  n.d. 
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Figure 1: A map of the sample collection sites off the Oregon coast. Sample sites were 
divided into "North," "Central," and "South" regions. The dashed boxes represent the extent 
of each region. The map projection is State Plan NAD 1983 (Meters), and the base map 
data source is ESRI 2010. 
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970 

971 Figure  2: Mean  frequency of occurrence  (FO)  of gut content  items and empty stomachs  for all  
sampled stomachs  across regions, separated by season. T he error bars depict standard deviation 
of  frequency of  each item type within each season.  Item types or empty guts that  lack bars for a  
particular season indicate that none  of that  item type was found in guts during that season, or  
that no guts  were empty  during that season. Notice that  mean FO  of  items in the category 
Decapoda was over twice  as high as  in the summer compared to the other  seasons. Similarly, 
items in the category Gastropoda  occurred  over twice as frequently in  the fall  compared to 
summer and spring. A lso, a mean of 35% of stomachs were empty in the  spring, whereas 0%  
were empty  in the fall.   
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980 

Figure 3: This figure depicts a source tracer biplot by δ13C and δ15N for Dungeness crab bait and 
prey species. The triangles indicate prey species, while the X represent bait. The error bars 
associated with both symbols show sample standard deviation for δ13C and δ15N. δ13C for teleost 
bait and prey species are arithmetically lipid corrected according to the linear model from Post et 
al. 2007. Only muscle tissue was used for fishes, shells were removed from molluscs, crustacean 
prey (Crangon sp., cumaceans (Diastylidae), hermit crabs (Paguroidea), and juvenile Cancer 
magister (CW<25mm) were ground and processed whole. 
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981 

982 

983 

Figure 4: A. The SI position of each sampled crab (smaller hollow circles) and 
Standard Ellipse Areas (larger ellipses) corrected by sample size (SEAc) for 
legal-sized males (LM; CW≥159mm), sub-legal males (SM; CW<159mm), large 
females (LF; CW≥159mm), and small females (SM; CW<159mm). SEAc 
encompasses 40% of the sample points from each group around their centroid, 
plotted with δ13C on the x-axis and δ15N on the y-axis. B. Polar histograms 
indicating the direction of paired difference vectors between all points in each 
group (listed above). Data include all spring, summer, and fall samples. Winter 
samples were excluded from these plots because no female samples were 
collected during the winter. 
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Figure 5: Seasonal variation in Standard Ellipses Areas corrected by 
sample size (SEAc) to approximate trophic niche for female (A) and 
male (B) crabs. Each ellipse encompasses 40% of all the sample points 
(depicted as small hollow circles) around the centroid separated by 
season. The lines within the ellipses connect the centroids of each 
ellipse. Plot A does not contain wintertime samples because female 
crabs were not sampled during the winter.  
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985 

986 Figure  6: Seasonal and regional variation in  δ13C (top panels)  and δ15N (bottom panels)  ratios  
of  sampled female  (left panels)  and male  (right panels)  Dungeness crabs. The center bar in the  
box represents the median value, while  the upper and lower bounds of the box show the  first and 
third quartiles. T he whiskers extend from the minimum to maximum values, excluding outliers, 
which are depicted as open circles.  No females  crabs were collected during the spring season in 
the south region.  
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